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1. INTRODUCTION

This paper deals with the problem of approximating functions which are
monotone on a closed interval by polynomials which are also monotone
there. In particular, we study the following problem.

LetfE qa, b], let 1 ~ k1 < k 2 < ... < k'J) be integers, and let €i = ±1,
i = 1,... , p, be given signs. Assume jlkfJl E qa, b], and that €;j(kil(X) ~ 0
for all x E [a, b] and i = 1,... , p. For a given positive integer n (~ k'J) let Pn

be the polynomial of best approximation to f from 7Tn , the set of algebraic
polynomials of degree n or less. In this paper we find conditions onfinsuring
that €iP~ki)(X) ~ 0 for all x in [a, b] and i = 1,... ,p. This is obviously related
to the degree of approximation by monotone polynomials as studied in
[1-3], [5-7].

It is known that the problem is not trivial. That is, examples of such
functions exist where the polynomials of best approximation are not mono­
tone even for n large. Such examples can be found in [2], [3], and [6], and
in Section 3 of this paper.

2. THE MAIN RESULT

THEOREM. Let f have 2m - 1 continuous derivatives on [-1, +1] for
some integer m ~ 1. Let 1 ~ k1 < k 2 < ... < k'J) < m be p fixed integers
and €i = ±1, i = 1,..., P fixed signs. For each positive integer n let Pn be the
polynomial from 7Tn of best approximation to f on [-1, +1]. If €;jlkj)(X) > 0
on [-1, +1] for i = 1, ... ,p and if }:;=l (Ilk) w(Ilk) < +00, then for n
sufficiently large we have €iP~kj)(X) ~ 0 on [-1, +1]for i = 1, ...,p. (Here w
is the modulus of continuity ofjl2m-l».

The proof of this theorem requires two lemmas. The first lemma is well

212
Copyright © 1973 by Academic Press, Inc.
All rights of reproduction in any fonn reserved.



MONOTONE APPROXIMAnON 213

known and can be found in [4, p. 74]. We first make the following definition
as in [4].

DEFINITION. Lln(x) = max(n-1(1 - X 2)1/2, n-2) for -1 <; x <; 1 and
n = 1, 2, ... and Llo(x) = 1.

LEMMA 1. There are constants M q , q = 1,2,... , so that ifw is any modulus
of continuity for which L;~l (Ilk) w(Ilk) < + 00, and if for fE C[-l, +1]
and polynomials Pn E 7Tn

then f has continuous derivatives f', ... ,j(ql, and

I j(q)(x) - p~~)(x)1 <; M q L ~ w (~)
k>[L1n (x)-lj k k

for -1 <; x <; 1.

We now state and prove the second lemma, which follows from Lemma 1.

LEMMA 2. Let f have 2m - 1 continuous derivatives on [-1, + 1] and let
w be the modulus of continuity ofj<2m-ll. Assume w satisfies

£~w(~) < +00.
j=l } }

For each n, let Pn be the polynomial from 7Tn of best approximation to f on
[-1, +1]. Then there is a constant Bmfor which

for all x E [-1, +1] and 1 <; k < m.

Proof of Lemma 2. We first note that if

En(f) = inf max I j(x) - p(x)l,
PEfT" -l<x<l

then

(1)

where K is some absolute constant depending only on m. This follows from
the well known Jackson theorems. It is easy to see that

1 I
2" <; Ll..(x) <; - .
n n

(2)
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We also see that for each x E [-I, +1] and each k = 1,... , m - 1 that

1 (1) 1 (I)--w - ~--w-
n2m- 1 n "'" n2k+1 n

~ In(X)k. ~ w (~)

~ In(X)k . w ( ~2 )

~ In(X)k w(Jn(x)).

The second and last of these inequalities follow from (2), and the third
follows from the well known inequality for moduli of continuity
w(n8) ~ nw(8) if n is a positive integer (see [4]).

Thus using (I) and this we have

(3)

for -1 ~ x ~ I and k = 1,2,... , m - 1.
That is,

(4)

if we define

w(8) = Kw(8),

then

Thus by Lemma I we have

lj<kl(X) - P~kl(x)1 ~ M p L ~w(~)
i;;.[Lln(xl-1] ] ]

for -1 ~ x ~ 1 and k = 1,... , m - 1. This completes the proof of Lemma 2.
The proof of the theorem now follows easily from Lemma 2 by observing

that L.;':n (Ijj) w(lfj) -- 0 as n -- 00.

3. EXAMPLES

We will not give examples of functions satisfying the theorem in this
section, since these are usually easy to recognize. Instead we will give examples
of functions that do not completely satisfy the hypotheses of the theorem.
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For some of these the theorem will still hold and for some it will fail. The
basic tools used to examine these functions will be the theorem and the well
known remainder formula in polynomial interpolation.

EXAMPLE I. Let f(x) = sin x on [17/4,17/2] and p = 1 with k1 = I.
Note that 1'(17/2) = 0 and that 1"(x) = -sin x < _(2)1/2/2 on [17/4,17/2].
Clearly, the theorem applies to f if we only consider 1". That is, P~(x) < 0
for all x in [17/4,17/2] for n sufficiently large. Thus for n sufficiently large Pn'
is strictly decreasing on [17/4,17/2]. But Pn' must interpolate l' at at least n
distinct points X o < Xl < ... < Xn-l in (17/4,17/2) since Pn is the polynomial
of best approximation to f Thus for each x in [17/4,17/2] is a number sx in
(17/4,17/2) for which

f ln+1l(Y)
Pn'(x) = 1'(x) - n! \,x (x - xo) ... (x - xn- 1)·

fln+ll(Sx)
= cos X - , (x - xo) ..• (x - xn- l)n.

Now

f I4k-1)(X) = -cos x ~ 0

and
fl4k-2l(X) = -sin x < 0, k = 1,2,....

Also, (17/2 - xo) ... (17/2 - xn- l) > O. So, Pn'(17/2) > 1'(17/2) ?': 0 if
n = 4k - 2 or n = 4k - 3 for k = 1,2,....

But then Pn'(x) ?': 0 on [17/4,17/2] since Pn' is decreasing if n is large and
n = 4k - 2 or n = 4k - 3. It is easy to see that for all other nPn'(17/2) < O.

EXAMPLE 2. Let f(x) = xe - eX on [0, 1], and k 1 = 1 and p = I. Then
1'(x) = e - eX andf(kl(x) = -ex, k = 2, 3,.... Note that1'(l) = O.

Using the same arguments as in Example 1 we see that Pn'(x) > 0 for n
sufficiently large.

EXAMPLE 3. Let f(x) = eX - x2e/2 on [0,1], P = 1, k1 = I. For n ?': 2
the polynomial Pn from 17n of best approximation to f is not increasing on
[0, 1] even though f is. In fact we have Pn'(l) < 0 for n ?': 2. To see this,
we use the remainder theorem mentioned in Example 1 at x = 1.

To be sure, the results obtained here are not complete, but they are a
beginning where this author and others had no theorem of this type a few
years ago. At that time each individual example was a result in itself. Some
of the examples obtained in [3] and [6] can be obtained using the theorem
or techniques described herein.
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In fact, the techniques used in these examples could have just as easily
been used to state theorems describing what happened. It is felt however
that the examples are more valuable since the theorems would appear quite
"doctored up" to get the signs of the various derivatives off to correspond
in the right way. The examples demonstrate techniques just as well.

4. REMARKS

It is still not known whether the theorem holds without requiring 2m - I
derivatives of the function. Perhaps a deeper study using divided differences
and the properties of the deviation points in Chebyshev approximation will
answer this.

This paper answers at least in part and in another sense more completely
a question posed by G. G. Lorentz in [3]:

Iff satisfies

in [a, b]

for i = I,..., p and if

En*(1) = inf max I j(x) - p(x)l,
IJEHn a~x~b

where H n = {p E7Tn : EiP(ki)(X) > 0 for a ::::; x::::; band i = I, ... ,p} then is

lim sup En*(1) < +oo?
n-.oo Eit)

Here En(f) is as defined in the proof of Lemma 2. Our theorem shows
under somewhat stronger conditions on f that for n sufficiently large
En*(f)jEfl(f) = I.

If one assumes that j(2m) E LipMex for some M > 0 and 0 < ex ::::; I, then
one can prove a stronger version of the theorem assuming only
1 ::::; k 1 < ... < k" ::::; m. The same proof goes through if we use
En(x) ::::; K . Ijn2m+~ and Ijn~ ::::; Llfl(X)~/2.
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